Multiplex dosage pyrophosphorolysis-activated polymerization: application to the detection of heterozygous deletions.
نویسندگان
چکیده
Large heterozygous chromosomal deletions and gene duplications are important classes of mutations that are generally missed by standard PCR amplification and sequencing. Multiplex dosage pyrophosphorolysis-activated polymerization (MD-PAP), a derivative of PAP, was utilized to detect these types of mutations. PAP is a method for nucleic acid amplification in which 3' blocked oligonucleotides (P*) are activated by pyrophosphorolysis when annealed to the target template and subsequently extended. A key advantage to this technology is that PAP reactions produce little or no primer-dimer or false priming. As a result of this enhanced specificity, MD-PAP is easy to optimize. Herein, we utilize MD-PAP to determine gene dosage of each exon of the human factor IX gene by comparison with one endogenous internal control from the ATM gene. Estimated dosage is proportional to the actual template copy number over a minimum dynamic range from 1 to 16 copies. A blinded analysis detected 100% of 43 heterozygous deletions of exons in the human factor IX gene.
منابع مشابه
Pyrophosphorolysis-activated polymerization (PAP): application to allele-specific amplification.
To measure mutation load or to detect minimal residual disease, a robust method for identifying one mutant allele in the range of 10(6)-10(9) wild-type alleles would be advantageous. Herein, we present evidence that pyrophosphorolysis-activated polymerization (PAP) has the potential to provide a highly specific and robust method of allele-specific amplification if DNA polymerases with higher py...
متن کاملRapid detection of three large novel deletions of the aspartoacylase gene in non-Jewish patients with Canavan disease.
Canavan disease (CD), an autosomal recessive neurodegenerative disorder, is caused by mutations in the aspartoacylase (ASPA) gene. In the present study, the ASPA gene was analyzed in 24 non-Jewish patients with CD from 23 unrelated families. Within this cohort, we found three large novel deletions of approximate 92, 56, and 12.13 kb in length, using both self-ligation of restriction endonucleas...
متن کاملPyrophosphorolysis-activatable oligonucleotides may facilitate detection of rare alleles, mutation scanning and analysis of chromatin structures.
Pyrophosphorolysis-activated polymerization (PAP) was initially developed to enhance the specificity of allele-specific PCR for detection of known mutations in the presence of a great excess of wild-type allele. The high specificity of PAP derives from the serial coupling of pyrophosphorolysis-mediated activation of a pyrophosphorolysis-activatable oligonucleotide (P*) followed by extension of ...
متن کاملApplications of multiplex ligation-dependent probe amplification (MLPA) method in diagnosis of cancer and genetic disorders
Introduction: Lots of human diseases and syndromes result from partial or complete gene deletions and duplications or changes of certain specific chromosomal sequences. Many various methods are used to study the chromosomal aberrations including Comparative Genomic Hybridization (CGH), Fluorescent in Situ Hybridization (FISH), Southern blots, Multiplex Amplifiable Probe Hybridisation (MAP...
متن کاملDetection of extremely rare alleles by bidirectional pyrophosphorolysis-activated polymerization allele-specific amplification (Bi-PAP-A): measurement of mutation load in mammalian tissues.
Pyrophosphorolysis-activated polymerization (PAP) was developed to detect extremely rare mutations in complex genomes. In theory, PAP can detect a copy of a single base mutation present in 3 x 10(11) copies of the wild-type allele. In practice, the selectivity of detection is limited by a bypass reaction involving a polymerase extension error from the unblocked oligonucleotide annealed to the o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- BioTechniques
دوره 40 5 شماره
صفحات -
تاریخ انتشار 2006